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NASA TT F-979C

THREE-DI_._NSIONALSUPERSO_IC E_UILIBRIUM FLOW OF *_
A GAS AROUND BODIES AT THE ANGI_.OF ATTACK

O.N.Katskova and P.I.Chushkin

Determination of the purely m__personiczcne of a thermody-

i namically stable gas flow around a three-dimen=ional body.
I

l A method of trigonometric approximation is developed for
4

i the case of an arbitrary number of meridional planes. A
1

special variation of the numerical-characteristic method

_ is worked out for the determination of flow _srameters. In
_,

this technique, the numerical solution is developed by means

of bands perpendicular to the axis of the solid. The method

is said to ensure second-order accuracy and to make possible

the use of a continuous trigonometric approximation, thus

mi_nimizi_ the number of layers and meridional planes to be

i dealt with.
,i

. Section 1. Introduction

The solution of the problem of supersonic flow around bodies of revolution

or other three-dimensional bodies moving at an angle of attack through the

atmosphere may be most accurately and most effectively obtained by the aid of

" numerical methods with computers.

This process is usually divided into two stages. The flow around the nose

section of the body is first cal_alated. The flow in this region may either be

supersonic (if the body has a pointed conical nose) or transonic (if the body

* _umbers in the margin indicate pagination in the original forei_, text.
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i
has a blunt nose).

!
In the second stage, the _)uresupersonic region of the flow beyond the nose !

i
cone of the body is calculated. The initial data obtained in the first stage i

t

of the solution are used in solving the Cauchy problem for the system of hyper- !
I

bolic-type equations, i
t"

Various r:americalmethods may be used for determining the parameters of a
i

three-dimension_ flow in the pure supersonic region. The method of finite dif-
I

ferences has been applied to the calculation of three-dimensional supersonic i

iv
flow around bodies (Bibl.1). A method of solution for this three-dimensional

problem by the numerical method of integral relations has also been presented

( ibl.2).

The numerical method of characteristic=, which is widely used to solve two-

dimensional problems of gas dynamics, is only just beginning to find application

in the calculation of three-dimensional supersonic gas flows. A tetrahedral

scheme of the three-dimensional method of characteristics has been given

(Bibl.3). Other schemes bravebeen discussed (Bibl.L). Although the generali-

zation of the method of characteristics to the three-dimensional case involves

no fundamental mathematical problems, the practical execution of the complete

=three-dimensional method of characteristics on computers does encom_ter diffi-

culties due to the complex behavior of the characteristic surfaces, the unwieldy

computational algorithm and the long programs, which demand a large computer

memory.
J

In this connection, a numerical method that seems promisLng is one in which,

by means of approximations in one of the variables (for _ustance in the angular

v_rlable _ in the case of cylindrical coordinates), the three-dimensional /50AL

system of differential equations of the problem can be transformed into a two-

2
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dimensional system of differential equations. The latter system will contain a

larger number of unknown functions, since it _ll also contain the values of the

approximated functions in all coordLuate planes on which they are interpolated

(i.e., in the case of cylindrical coordinates, on all the considered meridional

plan_s % = const), This system of equations in two variable_ may be solved by

the two-dimensional method of characteristics.

The idea of considerdng the lines of intersection of the three-dimensional

characteristic surfaces with the coordinate planes, instead of these _mrfaces

1

themselves, has been proposed (Bibl.5). Trigonometric approximations on the

variable _ were first used by Sychev (Bibl.6) for calculating the spatial super-

sonic flow around bodies of revolution at the angle of attack. In that case,

the _lution of the problem was reduced to the application of the two-dimension-

al meth_f characteristics in two meridional planes, parallel to the oncoming

flow. _

In the present work, we consider the calculation of the pure supersonic

region of flow over bodies with a flow of gas in thermodynamic equilibrium

around them. Here, the method of trigonometric approximations with a variable

is developed for the case of an arbitrary number of meridional planes. To de-

termite the flow parameters, we developed a special scheme of the method of

characteristics in which the numerical solution is construct_ by layers per-

pendicular to the body axes. On each layer the parameters are calculated at

certain fixed points, from which two-dlmensional characteristics lying in the

meridlonal planes under consideration are laid off in the direction of the pre-.

ceding layer. This computational scheme yields second-order accuracy and makes

it possible to use straight-through trigonometric approximations, which ulti-

mately permits the use of fewer meridional planes and layers.

3
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A brdef description of our computational scheme b_s been given elsewhere

(Bibl.2). In a previous report (Bibl.7), we investigated this numerical method

of characteristics by layers in the special case of supersonic axisymmetric flow

around a body o_ revolation _i a flow of a perfect gas at zero angle of attack.

Two papars have recently been published (Bibl.8, 9) applying a combination

of the two-dimensional method of characteristics and the method of finite aif-

ferences to the problem of three-dimensional sui_ersonicflow around a body. A

number of e_m_ples of calculated flows have been briefly mentioned elsewhere

(Bibl.8). In the solution developed by the author (Bibl.8), the third variable

is already eliminated (as it is in our own method) i_nthe initial three-dimen-

sional system of equations by the aid of an approximate representation of the
i

corresponding partial derivatdves. Hcwever, the mentioned computational method
:o

:(Bibl.8)has ceI%ain shortcomings. Its accuracy is of the first order; in cal-

culation by layers, the two-dimensional characteristics are here produced from

the preceding layer in the direction of th_ new layer, and no conversions are

made to allow for it. The partial derivabives to be eliminated are determined

from the difference of the corresponding Junctions on two adjacent interpolation

planes, and a large number of such planes must therefore be introduced. Owing

to the construction of the solution in ordinary Cartesian or cylindrical co-

ordinates (without "straightening" the surfaces of the body and the shock wave),

the calculation of the approximate partial derivatives close to these sur- _._

faces becomes extremely complicated.

Section 2. The Equations of the Problem

Let a supersonic uniform flow of a nonviscous thermally nonconducting gas

in a state of thermodynamic equilibrlt_ flow around a certain body at a velo-

1966004193-005



city V_ and an angle of attack _. Assume, for simplicity, that the body has a

plane of symmetry parallel to the velocity vector of the relative flow; it may,

in particular, be a solid of revolution. Consider the calculation of the pure

supersonic three-dimensional flow region between the surface of the body and the

shock wave. We will assume that the body is rather smooth, and confine the

calculation t_ cases in which no secondary shock waves appear within the flow

region.

Fig.1

Let us use the cylindrical coord4_natesystem x, r, $, fixed in the body

(Fig.l). Let the origin of coordinates be located at the l_ading edge of the

body, and let the x axis be directed along the body axis. Let the value $ = 0

correspond to the windward side, aud ¢ = _ to the leeboardside. By virtue of

the symmetry of flow, it will be m_fficient to consider the region 0 < # < N.

In calculating the purely supersonic flow region, it is necessary to solve

the Cauchy problem for a system of differential equations of hyperbolic type,

depending on the three variables x, r, ¢_ Let us assume the initial Cauchy

data (i.e., the fields of all the required gas-dynamic functions) to be known
I

in some plane x = xo, passing through the super!_onicregion.

Let us take the system of equations of gas dynamics describing the steady-

state equilibrium three-dimensional _ow of gas in the following form:-

p_,vv+ vvp= o, p(vv)v+ Vpffio, vv, ffio. (2._) -,
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where V, p, p, s and a denote respectively the velocity vector, pressure, dens-

ity, entropy, and velocity of so_id, mL_

To determine the temperature T, we use the thermodynamic equality

d21-- qds -F.g4p, (2.2)

g-'We

Here, h denotes the enthalpy, while the subscripts and primes denote the /506

corresponding partial derivatives. The density ,oand the enthalpy h in a gas

flow in thermodynamic equilibrium are connected with the temperature T and the

pressure p by the well-known relations:

p = p(Z,p), h -----h(r,p), (2.3)

which, for the case of air, are represented in analyT,ic form by the aid of

approximations [cf. (Bibl.lO)]. To calculate the velocity of sound a, we use

the relation

a -- [pp' +
prt i

m_

Fquations (2.1) - (2.h) thus form a complete system describing the equi-

libr&um flows of a real gas. In thi_ system, we will consider all quantities

to be dimensionless and take as the characteristic quantities some linear di-

mension (for instance the oblatenes,qor nose radius, r.), the velocity and

density of the relative flow V_ and p_, and the gas constant R. Then the di-

mensionless pressure will be given by the quantity p_V_, the temperature by the

V_, the enthalp2 by the quantity V_, and the entropy by the quantl-quantity 2

ty R.
I

For an ideal gas with a constarltadiabatic index a, _4s.(2.1) - (2.2) keep

their form, while eqs.(2.3) - (2.A) in these dimensionless variables reduce to

6 '
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the following:

p.._ p,/.ex, p ( i-_ ) P ×_s , r=--, h= T, a2=_-P (2.5)u p u--i p"

Let us now write eqs.(2.1) in cylindrical coordinates:

_; as Ov t Ow v ) uO_p_pl_ Op w Op

au _ w Orr i Op+ =°'
Ov Ov w Ov w9 t Op

u_+ u-67+ t =o, (2.6)..: r 0_ r p Ox

_':_ aw Ow w Ow +_vw t apu_ + +_ -" O,
-: Oz v _ + r 0_ r rp O, ...

Os _s w Os

u+v 4-rO =o,

where u, v, w a-e, respectively, the values of th_ velocity components I?in the

directions of the x, r, , coordinates.

Thus, the system (2.6) defines five fundamental functions: the velocity

components u, v, w, the pressure p, and the entropy s. The density 0, the

temperature T, the enthalpy h, and the velocity of sound a which also enter that

system, in the general case of equilibrium flow of the gas, are axpressed in

terms of these fundamental functions by the aid of the equalities (2.2) - (2oh).

The boundary conditions for the system (2.6), besides the Cauchy conditions

for x = xo, are conditions for the required _hock wave r _ rw(x,*), which are

the well-kno'_nre];_tionsfor a strong gas-dyaamic separation of flow, and the

no-_low conditions on the given surface of the body r _ r_(x,,).

Section 3. Method of Solving the Problem _

For the numerical solution of this problem of three-dimensional supersonic

flow around a body, let us use a method in which the initial system of three-

7
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d._nensionaldifferential equations will be redaced to a system of two-d_nension-
• r
!

al differential equations for a larger number of functions. _i
!

] First, let us substitute the variable r by a new independent variable g:

;,= __i[r- r_,(=,_,)],
8

where ¢ = rw(x,_) - r_(x,_). Obviously, _ = 0 corresponds to the body and g =
p

= 3. to the shock wave, and

r --_ -_rb. (3.1) ._,

J
In this case, the transformation formulas are of the form _

or(z, r, ,) = _ oF(x, _,_) t- aF(=,_,,)

OF(z, r, _,) i OF(z, _, _) : $.
ar e a_ '

oF(z, r, ,) =: -t ,

where : - :;"

: _.= - _(rw_'-r,=')- ' _= r

and, for a solid of revolution r = r_(x), and r_ _ = 0.

After passing to the variables x,_, _, the system (2.,q; e.,s.nbe written in! _

the following form: .... : :

8u + l_/ _,att at, aw + I ( _ @_a-; .

a,_ a_ t ( ap4. _._p_+ _=--_-O,=_+v_+b _--T'_/
,,, (3.2)

av av t 0P.4- ,, ,

aw aw _ _ + _ = O,
as Os

='T;=+ v_ +0,_ O,
where

8
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t i(aw , t,., @ ] _!rv -- -- (_.u+ v + _w), ¢i -- --
-/ e r I_-_-'_- pa20_-F 01, "
_: w Ott

r 0,' r (3.3)

_.}( Ow ,@ ), w o_a,,= +.w a,,--__r 0_' ,____

The system (3.2) contains derivative functions in a]l three variables /508 ,.

x, _, $. To eliminate the derivatives with respect to $ from tb_s system, let

us approximate the corresponding gas-dynamic functions with respect to this _-

variable. For this purpose, in the region O _ $ < _, let us consider _ + 1 I

meridional planes equidistant in $, $ -- Sk = k_/_ (k = O, l, o.. , %). Let us

further represent the odd F (i.e., w) and the even F (i.e., r, u, v, p, s)
i"

ifunctions in $ by the interpolational trigonometric polynomials

1-! - i

F(x, _,, ,)--_-- '_, a,(x, _)sin k% b"(x, _, ,)--- _ bp,(=, _)_sk,. ' (3./,)':
k-,*l k=O

The coefficients %(x,_) and b_(x,_) are expressed i_ terms of the values of the

functions being interpolated on the meridional planes considered, and are of the

form

l-! l

,z,,--- y, cJj, b,,= Y..dj,jt'_, *-
i /

•$:1 J=O

-_ _ the subscl_ipts j denote the values of F and _ at $ ,= _

_:umerical coefficients ckj, dkl for _ _ 2, 3, k are givan 4_.the Table.

For the approximations (3.A) adopted, the w lues of the derivatives with

respect to _ in the planes $ = $_ are given by the expressions

= _,i_,,.¢_,' (3. _)
j_t J.=o

, where, obviously, (8_/_,)o : (8"_/_)& = O. The numerical coefficients ekl, fkl '-

9
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for & = 2, 3, A are given in the c_me Table. Y

Thus, after application of the app:-sximations(3.i,),the three-d_mensjc=,al

system (3.2)becomes a z/stem o£ differential equations in the two independent

variables x and [_. However, _u tb_s case the values of the required functions

on the meridional planes $ = __ will e,_terinto the system (through the func-

tions _i containing de-_vatives _th re3pect to %). Consequently tkis two-

dimensional _t_._ --'-_be ....-"_^_-_ -_ " "_ _u._±_ on each u_ these mez_dier_%lpl_nes.

We find tb=_t,"_nderthe condition

J
t +_z

%he two-dimension_ZL system (3.2) _.1 be of the bype_o__Lic type and have two

fax_lies of real cP_%ra.teri_ics. The differential equations of the character-_

istics of the first "_d second fame!lee may be repre_nted in the following
- y

__ iX.............................

form: -" -- :

Y

_ where- = -/509

I (,+ _ .,, . ._ _"---_ _) _=_ "_""_" + _")_-gr-i , (_.s) _

The differential eo_vatibility equations -forthe characteristics of the .....-

fi_t andsecondfamiliesmaybe -m'itten,respectively,in-thefgllo.wingforms:.
-' L

.- _--1@+N_. _--C,'. (3.10)

where

', 10
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In addition, characteristic properties are also exhibited by another

: family of lines, defined by the equations

By analogy to the axisymmet_c flow, these lines will be arbitrarily te_ed

"streamlines". Along such "streamlines" the folScvJ__g relations will hold:

- (3.12)
BJv --dw + Cd._--O,

du+ G_ + Pdp+ Qdz= O, (3.13)

a,+E_=O, (3._)

Wh81_ 4
n = _, C=--(_,- @,), G = _,

._=-- Q= (_ + _,), E= --.
r

_:_ We note ghat by combining eqs.(3.12) and (3.13) we can obtain still another

_]relatzon which, will be _alid along the streamlines :

i

1 n

+_
-._:4:_......._ ." .-2- p _ .

J

• he differ_nf.i_ _qna_,ions of the characteristics and of the "streamlines"

and the _e_t_t rolatioms along these lines, for the system (3.2), are of a

form closely _ling that of the corresponding equations and relations for

:the system of equations of gas d_-_amics in the O_symmetric case. If, in

_qs.(}.6) - (3.1A), we set w = 0 and _ - O, it is easy to derive the equations

for a_isymmetric flow in the variables x,_ in the fo_m given elsewhere (Bibl.7)

for an ideal gas.

12
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Section A. Numerical Scheme of the Method of CharacterAstics

We shall now integrate the system of h_perbolic-t_pe differential equa-

tions (3.2) by the numerical method of characteristics. In connection with the

use of an approx_ion of the type (3._) in solving the problem, it will be

axpedient to use a special schemc of the method of numerical characteristics in-

stead of the standard scheme. In this special scheme, the calculation is per-

formed by layers bounded by planes x = const, and the characteristics on each

new laver are produced in the direction toward the preceding layer, through /Sll

selected polnto with value_ of _ --const.

To solve the problem, the differential equations of the characteristics and

of the "streamlines" and the relations along these lines [eqs.(3.6) - (3.1A)]

are considered on each of the _ + 1 meridional planes _ = ¢k (k - O, l, ... _ i)

introduced. These equations and relations are then represented in the form of

finite differences according to a scheme of second-order accuracy. The result-

ant system of finite equations, which contains the values of the gas-dynamic

f,_ctions on all meridional planes, is sclved by iteration.

We will discuss in some detail the computational scheme of the method of

characteristics. As already a_mmed above, on some layer x - Xo, located be-

tween the body and the shock wave in the hyperbolic region, let there be known

the fields of the velocity components u, v, w, of the pressure p, of the entropy

s, and of the temperature T, as well as the radius of the shock :._a_verw and the

derivative r_ v. Of course, let the geometry of the body, i.e., the l_Auctions

rb(x,_),^r_x _,_), also be prescribed. Let us select & + l, the number of the

meridional planes $ - ¢k(k - O, l, °.., &), and i_ieach plane let us con_ider

n + 1 points with values _ - _ - m/n (m-O, l, ..., n)_ let us _ake these

values _ - _, as the same for all ¢ - ¢_. From the known fields o_ the funda-

13
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mental functions, we then obtain the initial Cauchy data at all points with the

coordinates xo, _,, _k. Let us now determine the values of the fundamental

functions on the new layer x = xo + _x at points with the same _,, _.

The flow par&meters on the new layer are calculated in the following se-

qu_ice: First we calculate the points cn the shock wave (_ = l) at all values

of _ = #k- Then we determine the gas-dynamic parameters at the interior points

of the region, using the iteration method to solve the system of corresponding

finite-difference equations for the individual value of _ = _ ,, and simultane- m-

ously for all $ = Sk. Ymving from the shock wave toward the body, we calculate

the flow parameters at all considered points along the interior lines corre-

......_....._ ...... slug values of _ _ ,. Finally, for all _ _,

we calculabe the points along the contour of the cross section of the body

- 0).

Let us now consider in detail the solution scheme of the individual ele-

mentary problems of the method of characteristics: determir_tion of the flow

parameters at the points on the shock wave, s.t interior points, and at points on

the body surface.

I. Point on the Shock Wave

Here the discontinuity relations are used to find the gas dynamic functions

immediately beyond the shock wave. In the case of equilibrium flow of the gas,

let us take these relations in the form

';(±)t+ ,
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oos{n,x) A- cos(n,r),

u--u_=--Ap cos(n, V®) , v--v.--.- tPOos[n;y_.)",
cos(n,_)

w-- w.. -" --Apcos(n, V®)

where the subsc__pt _ denotes the parameters of the relative flowAp = p - p_

while, for the angle between the normal n to the _ar£ace of the shock wave and

the velocity vector of the relative flow V_,we have

cos(,._,v®)-- 6 , (_.3)
_/tJr v_,#:Jr (r**'/r )_"

where . ,

6 --" r.z' r,os g +,sin a _as_ -t- r_----_tsin a sin _.,rw

Obviously, in our dimensionless variables, the velocity component of the rela-

tive flow normal to the shock wave, will be

v,,®= cos(n,v®). (_./,)

These relaoions on the shock _ve mnst be associated with the well-known

relations (2.3) between p, h, p, and T in equilibrium flow as well as with

eq.(2.2) which defines the entropy s in terms of these four functions. Let us ' --

rewrite the expressions for the velocity components beyond the shock wave as

follows:

a A- rzJ
g=COS -- p-_-,

i

v= - sina_os_+ @y, (_.5)

rw_t. i
•w ---"sin (_sin _- Ap-_-

For the case of an ideal gas, when neither tLe temperature T nor the en-

thalpy h need be considered, the relations on the shock wave are simplified. 'i

15

1966004193-016



-L-- I •

In that case, the pressure, density, and entropy beyond the shock _ve are cal-

culated by the axplicit formulas

Ap -- _ V.®'
x+l

P "- 1 --f(z-- t)/(_ + 1)']A,02(1 -- V.® z) ' (A.6)

_--1 p_ '

while eqs.(A.5) for the velocity components retain their form. In eqs.(£.6)

ti_evelocity A_ = V_/a@r, referred to the critical velocity of sound a_, is

expressed in terms of the Mach number N_:

A._'-- (_ + I)M®'
2+(z-- 1)M**' '

The points located along the shock wave on the new layer x = xo + Ax are

.calculatedby successive approrlmations. Consider first any of these points /513

3 (Fig.2a) in one of the meridional planes $ = '_k,for instance in the plane $ =

,: = O. Here we assign the value of the derivative r_ close to the value of the _

derivative at the preceding point 5 on the shock wave. The radius of the shock

: wave at the point 3 is then calculated by the fornnfLa

rws= rw_"}-*A[(r_')s + (r_')5]Az

and the value of cos(n, V_) by eq.(A.3).

In the case of equilibrium flow, at the point 3 the values of pressure Ps ---

and temperature Ta are prescribed, and Ps and ha are found from eq.(2.3). The

value of T is varied with the selected Ps in such manner that eq.(A.1) is satis-

fied with the required accuracy. In turn, the value of Pa is varied such that

[at the value of Ts already selected by the condition (A.1)] eq.(A.2) is satis-

_jied. In this process of selecting the values of Ps and Ts, any desired inter-

16
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polation or iteration schemes can be used. After completing the selection of

Ps and T3, the velocity components are determined by eqs.(h.5), and the value of

the entropy ss by eq.(2.2) wrdtten in finite-difference form along the shock

wave --

s_= s_+ ! [r, - r_- g(p_- p_)] (_. 7)q

In the case of an ideal gas, the process of selecting Ps and Ts is no long-

er necessary, since eqs.(L.6)permit a direct calculation of P3, Ps, and ss from

the orescribed value of rw_ at the point 3.

Further, starting from the point 3 we produce the characteristics of the

first family I in the direction of the preceding layer x = Xo, and represent

eqs.(3.6) and (3.9) in finite-difference form:

_,= i - A,Ax, (_.8)

-- _t + g (Ps -- Pi) + LAz = 0. (h. 9)

From eq.(_.8) we find the coordinate _i of the point 1 on the _ayer x = xo.

5_-I3

•"L_-J"
a b c

Fig.2

Using quadratic interpolation at three adjacent points on this known layer, we

then determine the values of all fundamental functions at the point l, calculat-

ing the radius r_ by eq.(3.1)_ We then check whether the equality (_.9) is

satisfied. In general, it will not be satisfied for arbitrarily chosen values

Of r,_ at the point 3, meaning that such a value of r.I must be changed for

'17

1966004193-018



I II I

'" & I " t

?

the ¼ = Sk considered. This completes the calculation of one approximation for i

the point 3 located on the shock wave in one meridional plane $ = _k.

This computational process is conducted successively to compute, in first

approximation, other points 3 on tileshock wave for all remaining $ = Sk, for

which the corresponding values of rw_ are prescribed for each $ = Sk-

After completing the cycle of computations in first approximation, we pro-

ceed with an analogous computational process in the second and succeeding ap-

proximations for all _ = Sk(k --O, l, ..., &) until values of r_ have been

selected such that all the _alities of the type of eq.(_.9) are sinmltaneously

satisfied, with the required degree of accuracy, for each $ = _k.

We note that the coefficients g and q in eq.(_.7) are the averages for the

poiuts 3 and 5, while the coefficients At, K, L entering into eqs.(&.8) and (A.9)

are averaged for the points 1 and 3 (only in the first approximation is the co-

efficient A_ used for the point 3). The derivatives of rw, u, v, w, and p _th

respect to $, which enter into %, _, cos(n, V_), and L, are taken in the first

approximation at the points 3, the same as at the corresponding points 5 on the

layer x = x_ In the following approximations, these derivatives are determined

by the aid of the interpolation formulas (3.5) from the values of the functions

calculated in the preceding approximation.

2. Interior Point of the Re_ion

We pass now to a description of the iteration process of calculating the

interior points of the flow region which are located on the layer x _ xo + A x,

at one value of _ _ _m and a series of values of $ _ _k (k _ O, l, ..., &).

Considering at first any one meridional plane $ _ Sk, let us pz_duce, from

the computational point 3, the characteristics of the first family I and of the
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second family II and the "streamline" IYI, which intersect the kmown plane x =

=x o at the points l, 2,_d &, in sequence (Fig.2b). The coordinates of these

points are determined from the finite-difference equations that follow from

eqs.(3.6), (3.7), and (3.11):

By quadratic interpolation on the layer x = xo, we find at these three points

= _i the quantities u, v, w, p, T and at the point & also the eutropy s.

Further, on the basis of the compatibility relations (3.9) and (3.10)

written in finite-difference form, we axpress P3 and {s:

i
Pi+

K+---y[_i--_--:(p_--_)+([_--LI_], {L.10)

while from eqs.(3.1&) and (2.2), used along the "streamline_',we obtain the fol-

lowing formulas for the entropy ss and the temperature Ts :

s3= s, -- EAx, (_. ll )
r_ = r, + q(s3- s,) + g(ps - p_). (_.12)

Let us now take the finite-difference a_alogs of the two remaining rela-

tions (3.12) and (3.13), valid along the "streamlines", and eq.(3.8) for the

quantity C. These t_2ee equalities permit determining the three velocity com-

ponents at the point 3 : /515

B{_u, - P(p,- p,)- QA4-- _,,}+ (t + a_,) (w,+ C_)_.t

w,= i+ G_+ Bits '
t (&.13)

uj--,_[u, --P(p,--p,)--QAx+ G(v_4-ttsw,)],

vs = ua_ -- _w3.

Equations (&.lO) - (_.13) make it possible _ calculate successively, at

19
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the point 3, the quantities p, s, T, u, v, w. The density 0, the enthalpy h,

and the velocity of sound a, enteI_ng into these expressions, are found by the

aid of eqs.(2.3) and (2°L), and the radius r by eq.(3.!).

In the case of an ideal gas, when the tem_0eratureT and the enthalpy h are

excluded from the fundamental functions, eq.(L.12) is omitted, while the densi-

ty p and the velocity of sound a are found in terms of p and s from eqs.(2.5).

Thc abovc-described computational procedure is performed successively for

all points corresponding to the prescribed _ = _m and to all considered $ = ¢_.

In this way we calculate the first iteration for _olving the system of differ-

ence equations. An an_1ogous computational cycle is repeated in the following

iterations, permitting the determination of all required functions with the re-

quired accuracy° The true signs are usually found after three iterations.

In the first iteration, the coefficients Ai and the derivatives of u, v, w,

p, s with respect to _ that enter the quantities _ of eq.(3._) are used for

calculating the points 3_ according to their values at the corresponding points f

5 on the preceding l_vor. In the system of difference equations (i_.lO)- (A.13)

the coefficients K, L, J, N, E, g, q, B, C, G, P, Q (as well as the coeffi-

cients Ai in the succeeding iterations) are determined, respectively, from

points 3 and l, 3 and 2, 3 and _. The above-mentioned derivatives with respect

to _ in the second and follo_.ng iterations are determined by the interpolation

fn_._._las t'_ _' . •.... _._), using the data from the preceding iteratlon.

3. po,inton the Body Surface .

The calculation of the points on the body surface (_ = O) in many respects

is similar to the calculation of the interior points of the flow region, and is

performed by successive iterations for all values of ¢ = Ck. _e will describe

20
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this computational procedure for one -l_ne_- 9 = tk and for the case of equilib-

rium flow.

Let us construct the region of characteristics of the second family II,

passing through the considered points 3 on the surface of the body (Fig.2c).

The coordinate E2 of the point 2 of the intersection of this characteristic with

the layer x = xo will be _ = -AsAx. At this point, the values of all f_ida-

mental functions are determined, as is conventional, by quadratic interpolaf_on.

From eq.(3.10), taken in finite-difference form, we obtain

ps= p, + 7 + NAx).

The no-flow condition o_he body surface, i.e., the condition that the
J

normal velocity com_Jn_nt is to vanish, leads at the point _5_o the equality

_u, Jrv,-__w, --O. (I.15)

Hence, bearing in mind the definition (3.8) for the qu ntlty _, we find

'1-- --;_s. (,_.16) :

It is !_cewise obvious that the line 3-& on the surface of the body is a "stream-

line"; consequently the relations (3.12) - (3.1&) are valid along it_

Writing these latter equalities in finite-difference form, as w_ll as

eq.(2.2), will yield, in addition to eqs.(&.l&) - (&.16), a system of equations "

for calculating all fundamental quantities at the point 3 on the surface of the

body. The formulas for determinir4_the functions ss, T3, us, vs, a_ndws here

coincide with the corresponding eqs.(&.l]) - (A.13) for an interior point of the

flow region, while the pressure Ps and the quantity Cs are calculated from

eqs.(A.l&) and (_.16). The density Ps, the enthalpy hs, and the velocity of

r
i
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sound as are found from eqs.(2.3) - (2._)°

The coefficients enterir_ the difference equations are averaged here in the

same way as in calculating an Jmterior point. The chanKes in the computational

scheme for the case of an ideal gas will be analogous.

After calculating the flow parameters for the entire layer x - xo + Ax, the

accuracy of the solution can be checked. For tkis purpose, u3ing the approxi-

mations adopted for the fundamental functions, the discharge and ener._yof the

gas are found by integration over this layer, after which we determine whether

_ or not the corresponding conditions of conservation are satisfied.

The computational grid, i.e° the number & + 1 meridional planes $ _ _k (k =

= O, l, ..., '.,_-_ud Lh_ number n + 1 points _ = _m (m = O, l, ..., n) in each

,_ plane, is selected accordir_ to the required accuracy. The use of trigonometric

_ approximations and relatively smooth variation of the functions with _ in the

case of smooth bodies at moderate angles of attack make it possible, for prac..

tical purposes, to confine the calculation to the range & = L - 6, while n is

taken in the range of 25 - 50_ The choice of the spacing Ax is governed by

stability considerations.
<"

We note one more consequence of eq.(3.1&). If, in the initial c_oss

section, the entropy on the body surface was every_lere the same (i.e., _ s/a_ =

0), it _dll also remain constant along the entire body (naturally, on condi-

gn that no new shock waves are formed on the m_face of the body)° This

c_operty also follows from a consideration of the flow around the surface of the

body within the framework of rigorous theory.

J

Section 5. Calculation Examples

This method has been used in calculating, for illustrative purposes, various

, /
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cases of supersonic flow"around blunted cones at an.angle of attack in a stream

of ideal air (_ = 1.i). The cones were of circular cross section, with a spher-

ically oblate nose. The cases differed in the vertex half-angle w, the Mach

number M_ of the relative flow, and the angle of attack _. The initial Cauchy
!

data in the hyperoolic region were taken from available calculations of super-

sonic flow around a sphere (Bibl.ll).

A few results of the calculations of three-dimensional supersonic flow

around a truncated cone w = _ are given by Figs.3 - 6, referring to the case

of M_ = & and _ = 10° . In all these graphs, the linear dimensions are given /518

in multiples of the nose radius, and the origin of the cylindrical system of

coordinates is located at the leading edge of the body.

The individual variants were calculated with different computational grids.

The number n, determining the number of points in each meridional plane, was

taken as n = 25. A comparison with the corresponding calculations at n = 50

showed that t.hisvalue of n yielded satisfactory accuracy. The number t of

meridional planes was also varied in the calculations. All cases were calcul-

ated for five meridional planes,t = A (solid lines in the graphs), and some

cases for three meridional planes, t = 2 (circles in the graphs).

In Fig.3 the form of the shock wave is plotted in sections # = const, and

Fig.& gives the pressure distribution along the surface of the body (on the

linear segment of the generatrix).

Figs.5 - 6 give the variation in pressure between the shock wave and the

surface of the body along the layers x - const for $ - 0 and # _ _.

Finally, in Fig.7 the pressure distributionscalculated for t = & on a cone

- 20°_for M_ - _ and _ - lO° are compared with the corresponding results (but

at M_ - 20) obtained in (Bibl.12) by the finlte-difference method (Bibl.1) and

2&
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shown by the dashed line in the diagram.
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